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Model of human visual-motion sensing
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We propose a model of how humans sense the velocity of moving images. The model exploits constraints provided
by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequen-
cy, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the tempo-
ral frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model
is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of
each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage,
these components are resolved in order to measure the velocity of image motion at each of a number of spatial loca-
tions and spatial frequencies. The model has been applied to several illustrative examples, including apparent mo-
tion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.

INTRODUCTION

Visual motion perception serves many roles, among them the
perception of depth, the segregation of objects, the control of
some eye movements, and the estimation of the motion of
objects in the world. Although it is clearly important, the
visual-motion sense does not have a widely agreed on principle
of operation. One view is that the brain detects a physical
property of the stimulus, which we may call movement,
sometimes also called optical flow.' When this property is
detected, the observer has a sensation of visual motion, which
may be attached to some visual object. Occasionally, motion
is sensed in stimuli that do not contain motion, in which case
we speak of apparent motion. An alternative and we believe
correct view is that movement is not a physical property of the
stimulus. Like beauty and color, motion is in the eye of the
beholder. Images do not move but rather change in many and
various ways. Some of these changes give rise to an impres-
sion of movement. In short, all movement is apparent.

Both of the preceding points of view agree that motion
perception is a process that examines the physical stimulus
and controls perceptions, judgments, and actions related to
the motion of objects or their projections. We adopt the term'
motion sensor for a mechanism at the front end of this process.
It begins with the physical stimulus and ends with some ex-
plicit representation of quantities related to motion of either
the image or the world.

From the optical-flow point of view, the job of the motion
sensor is to measure the motion in the stimulus. A model of
the sensor is easily constructed, since it is given directly by the
physical definition of the quantity to be detected. But, if
motion is not a physical property of the stimulus, what is the
function of the sensor? It is to sense physical features of the
stimulus that are likely (but not certain) to be informative
about the motion of objects in the world. The latter case is
much more difficult for vision theory. There are many can-
didate features, and, to model the sensor, we must select a
particular set. There are two ways of making this selection.
The first is to appeal to invariants in the imagery projected
by objects in motion.2 -4 The second approach is to identify
a set of features that make sense of the known properties of

human vision.5 In this paper we make use of both ap-
proaches.

The plan of this paper is as follows: Section 1 summarizes
some properties of human motion perception. In Section 2,
we examine the frequency representation of a moving image
and propose a set of features to be used by the motion sensor.
In Sections 3 and 4, we develop our model of the human mo-
tion sensor. An implementation of the model is described in
Section 5, and in Section 6 we show some preliminary simu-
lations. In Section 7, we make some concluding comments
and suggest how the model may be used to analyze and direct
psychophysical, physiological, and computational research.

1. PROPERTIES OF HUMAN MOTION
PERCEPTION

In this section, we note some of the important properties of
human motion perception. These will guide and motivate the
construction of our motion sensor.

A. Stimulus for Motion
The stimulus for visual motion is primarily the distribution
of light over time and over two spatial dimensions in a plane
before the eyes. Beyond this point, what happens to the
signal is sufficiently obscure that a model must be explicit. It
is unreasonable for a model to begin with quantities such as
edges or optical flow without being explicit about how these
quantities are to be computed, or demonstrating that they
could be computed, or at least acknowledging that this part
of the problem is being sidestepped. In the model developed
here, we begin with a distribution of contrast over dimensions
of x, y, and t. A digital version of this distribution can be
obtained by sampling the output of a video camera.

B. Things Appear to Move with Direction and Speed
Everyday visual experience shows that humans see things
move and can with some accuracy judge how fast and in what
direction they move. Thus the representation of the image
produced by the model should include an explicit assignment
of velocity. Whatever other details of the visual process we
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may try to simulate, our model will have little value if it fails
to meet this first test.

C. Perceived Motion Is Local
We are capable of seeing different motions in different parts
of an image, such as when two objects move relative to each
other. The motion sensor must therefore assign different
velocities to different local regions of the visual field. The
local assignment of velocity implies that each sensor must
respond selectively to a local region of the visual field. There
are few data about how local these operations must be, and
this is a promising area for further research.

D. Perceived Motion Is Specific to Spatial Frequency
There are several pieces of evidence that show that individual
motion sensors respond selectively to different bands of spa-
tial frequency. Perhaps the most compelling is an experiment
by Adelson and Movshon 6 in which they superimposed mov-
ing sinusoidal gratings of different orientations. When the
two gratings were similar in spatial frequency, the percept was
of a single coherent plaid pattern with an apparent velocity
equal to that of the nodes of the pattern. When the spatial
frequencies differed by an octave or so, the two gratings ap-
peared to move independently past each other in their own
separate directions.

Another result in this vein is the observation that apparent
motion is spatial-frequency specific. 7 Two small patches of
spatial grating were presented briefly at nearby positions and
again briefly with their positions exchanged. This crossed
phi sets up a competition between the perception of patches
that remain in static positions and the perception of patches
that move and exchange positions. When the spatial
frequencies of the two patches are the same, there is no ap-
parent movement. This is not surprising, since nothing has
changed from the first presentation to the second. However,
when the two spatial frequencies differ by an octave or so, the
patches appear to move across each other and exchange po-
sitions. If apparent motion were not spatial-frequency spe-
cific, there would be no reason for the patches to move. It is
not the case that any difference between the two patches
suffices to induce apparent motion. For example, if the
patches are of the same spatial frequency but different or-
ientation, there is no apparent motion between the patches.

Numerous experiments have shown that the mechanisms
that detect stationary contrast are selective for spatial fre-
quency.81 0 This also appears to be so for moving-contrast
patterns." It has also been shown that the mechanisms that
detect moving contrast are direction selective (see Subsection
1.G) and signal the direction of motion (at least to within 90
deg) (see Subsection 1.H), properties that are symptomatic
of a motion sensor. Taken together, these results suggest that
the detectors of moving contrast are spatial-frequency spe-
cific.

To summarize, the motion sensor is selective for spatial
frequency and may assign different velocities to different
spatial-frequency bands. The computation of velocity ap-
pears to be carried out independently at a number of different
spatial scales.

E. Brief Exposures
Brief exposures to moving stimuli are sufficient to produce
vivid motion sensations and accurate motion judgments. For

example, at threshold contrast, observers correctly judge the
direction (left or right) of a moving grating when the exposure
duration is only 410 msec.' 2 Increasing the duration by a
factor of 5 has little effect.' 3 Above threshold, a 5% difference
in the speed of a moving line can be discriminated for expo-
sures as short as 200 msec.14 Evidently, the spatiotemporal
feature extracted by the human motion sensor must be brief.
Put another way, the sensor must integrate over only a brief
interval of time.

F. Adaptation to Motion
Prolonged viewing of a pattern that moves in one direction can
produce large alterations in the visibility of subsequently
viewed stimuli. These effects are of three general kinds, de-
pending on the type of test stimulus viewed after adaptation.
If the test stimulus is in fact stationary, it may appear to move
in a direction opposite to the adapting pattern.15 This is the
well-known motion aftereffect. If the test stimulus moves in
a direction similar to that of the adapting pattern, its apparent
direction may be repulsed away from the adapting direction
by as much as 10 deg.16 And, finally, contrast thresholds are
raised much more for test stimuli that move in the adapting
direction than for those that move in the opposite direc-
tion.' 7

All these effects suggest the existence of separate, adapt-
able, direction-selective sensors. They further suggest that
the final estimate of velocity is the result of computations
across a population of sensors selective for different direc-
tions.

G. Subthreshold Summation
The threshold contrast for a sinusoidal grating moving to the
right is almost unaffected by a grating of equal contrast
moving to the left.12 18 19 This is so in spite of the fact that
the sum of two gratings that move in opposite directions has
twice the peak contrast of either grating alone. The result
indicates that the mechanisms that detect moving patterns
are direction selective, in the sense that they are sensitive to
less than the full 360-deg range of movement directions. It
also indicates that, at least near threshold, the detectors of
opposite directions are independent of one another.

This result is observed only when the image velocity is
greater than about 1 deg/sec.12"19 Below this point, consid-
erable summation is observed between gratings that move in
opposite directions, consistent with detection by nondirec-
tion-selective mechanisms. This agrees with other evidence
that below this point a separate, nondirection-selective, static
system is more sensitive (see Subsection 1.K).

When two gratings of the same spatial frequency u moving
in opposite directions at speed r are added together, the result
is a stationary grating whose contrast varies sinusoidally in
time (flickers) with a temporal frequency of w = ru and whose
contrast is twice that of either moving component. The data
cited indicated that at low velocities the thresholds for moving
and flickering gratings of the same spatial and temporal fre-
quency are about equal, while at higher velocities sensitivity
is almost twice as great for the moving grating. Over the full
range of velocities, therefore, sensitivities to these two patterns
are equal to within a factor of 2.

H. Direction Discrimination at Threshold
Observers are able to tell which way things are going at the
threshold of vision. More precisely, the contrast threshold
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for discriminating whether a grating moves to the right or to
the left is the same as the contrast threshold for detecting the
stimulus.12 This is consistent with the hypothesis that
moving stimuli are detected by sensors that are direction se-
lective and that explicitly assign a direction to the internal
representation of the stimulus. In other words, direction is
part of the label of the sensor.

This result is found only for images moving at moderate to
high velocities (above about 1 deg/sec). At lower velocities,
the threshold for judging direction is much higher than that
for simple detection. This is not due to the confounding ef-
fects of eye movements on slowly moving patterns, as it has
been demonstrated under stabilized conditions.2 0 This dis-
crepancy between results at low and high velocities may reflect
the operation of separate motion and static systems (see
Subsection 1.K).

I. Contrast Sensitivity to Moving Patterns
Robson 2l and others2 2,23 have measured human sensitivity
to flickering sinusoidal gratings with specific spatial and
temporal frequencies. The data form a surface as a function
of spatial and temporal frequency whose high-frequency
boundary is the product of separable spatial and temporal
contrast-sensitivity functions.2' In other words, the upper
bounds of sensitivity appear to be set by separate spatial and
temporal filtering processes. As noted in Subsection 1.K,
contrast thresholds for moving and flickering gratings are
always equal to within a factor of 2. Apart from this small
factor, then, this spatiotemporal contrast-sensitivity surface
determines sensitivity limits for moving gratings. Direct
measurements of sensitivity to moving gratings indicate that
this is so.24 ,25

One consequence of the shape of the spatiotemporal con-
trast-sensitivity surface is that, as the image moves faster, the
highest spatial frequency that can be seen declines. As speed
increases, the temporal frequency (the product of speed and
spatial frequency) increases most rapidly for the highest
spatial frequencies. We have already observed that motion
sensors must be selective for different bands of spatial fre-
quency. The above result implies that low-spatial-frequency
motion sensors will respond to higher velocities than will
high-spatial-frequency motion sensors.

J. Apparent Motion
If a spatial target is presented at one location, then extin-
guished, and a brief time later presented again at a nearby
location, it may appear to move between the two points. A
summary of the extensive classical literature on this subject
is provided by Kolers.26 The effect is more pronounced when
the sequence contains not just two but many presentations
along a path.27 When the time and space intervals between
presentations are brief enough (as in film and video), the se-
quence of static presentations may be indistinguishable from
continuous motion. This limiting result is probably a con-
sequence of the known spatial and temporal filtering actions
of the visual system and does not necessarily reveal anything
about the motion-sensing system per se. 29

,
30

Apparent motion is important for three reasons. First, it
is a good example of a stimulus without a well-defined optical
flow, which may yet give rise to unambiguous perceived mo-
tion. Second, it imposes another constraint on our model. It
too must respond to apparent-motion stimuli and should in-

dicate the same speed and direction as perceived by the ob-
server. Third, it suggests a filter structure for our sensor.
The stimulus for apparent motion may be regarded as a
sampled version of a corresponding continuous motion. The
sampled stimulus differs from the continuous stimulus by the
addition of certain spatial and temporal frequencies. The
apparent similarity or identity of the two stimuli suggests that
the additional frequencies have been filtered out. This leads
us to seek a filter structure for our motion sensor and to in-
vestigate what form it should have in the space-time fre-
quency domain. 57 3 0 This investigation is carried out in
Section 2.

K. Motion and Static Systems
There is some evidence that the visual system contains two
separate systems to process and represent moving and static
imagery, respectively.' 7 The systems are thought to be dis-
tinct in their spatiotemporal sensitivity, the motion system
being more responsive to rapidly moving patterns (low spatial
and high temporal frequencies) and the static system more
responsive to slowly moving patterns (high spatial and low
temporal frequencies). In addition, the motion system is
thought to be direction selective, in the sense that image
components moving in opposite directions are sensed by
separate mechanisms. The systems are also thought to differ
in the image representations that they provide to later stages
of visual processing: The motion system assigns velocity (or
at least direction) values to components in an image; the static
system does not.

The evidence on this point is modest but favorable. As
noted above (see Subsection 1.G), contrast summation is di-
rection selective only above about 1 deg/sec.1 2 Furthermore,
direction is judged correctly at threshold only above about 1
deg/sec (see Subsection 1.H).12 13,20 Discrimination of spatial
frequency at detection threshold appears to be much worse
when the temporal frequency is suited to the motion system
than when it is suited to the static system.3'

L. Inhibition between Directions
There is some evidence for inhibitory interactions between
the sensors for opposite directions.3 2 33 Levinson and Seku-
ler32 showed that adaptation to the sum of leftward- and
rightward-moving gratings produced less threshold elevation
for a rightward-moving grating than did adaptation to a
rightward-moving grating alone. In addition, it is difficult
to construct explanations of the motion aftereffect that do not
involve inhibition between the sensors for opposite direc-
tions.

M. Speed Discrimination
Some of the evidence cited indicates that motion sensors are
selective for spatial frequency and for direction. Another
dimension in which they might be selective is speed. How-
ever, observers are quite poor at discriminating the speed of
moving (or flickering) gratings at detection threshold.31 34

Quite low speeds can be discriminated from quite high speeds,
but no finer performance is possible. This suggests that the
sensors are not particularly selective for speed or that the
sensors that detect moving images do not explicitly assign a
speed value. Above threshold, however, the system is ex-
quisitely sensitive to variations in speed, reliably detecting
variations on the order of 5%.14 This discrepancy between
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threshold and suprathreshold discrimination is a common
feature of human perception (see, for example, the comparable
case in discrimination of spatial frequency31 ' 35) and may be
explained by a two-stage model. The second stage, which
becomes effective only above threshold, combines the re-
sponses of first-stage mechanisms and provides finer perfor-
mance. Our motion sensor will take this two-stage form.

2. FREQUENCY COMPOSITION OF MOVING
IMAGES

Section 1 described some properties of human motion per-
ception that will guide the construction of our motion sensor.
One of those properties was that motion analysis appears to
be done in parallel within a number of separate bands of
spatial frequency and that the elementary features into which
images are decomposed are patches of oriented sinusoid. This
leads us to consider how the frequencies that make up an
image behave as the image is moved.5 2830 ,36 We restrict our
attention to one particular case: that of an otherwise-un-
changing image undergoing translation at a constant velocity.
This is one of the rare cases in which an unambiguous image
velocity exists. It should be noted that other, more-complex
motions can be constructed by piecing together spatial and
temporal segments of this simple kind.

A. Contrast Distribution of a Moving Image
An arbitrary monochromatic space-time image can be rep-
resented by a function c(x, y, t) defined over some interval,
which specifies the contrast at each point x, y and time t.
Contrast is defined as the luminance divided by the average
luminance over the interval. Although not strictly necessary,
it is convenient to begin this discussion with an image that is
static, that is,

co(x, y, t) = co(x, y, 0) for all t. (1)

Define the image velocity as the vector r with horizontal and
vertical speed components r and r, or, in polar terms, a speed
r and direction 0, where r = r cos and r = r sin 0. If the
previously static image translates at constant velocity r, the
distribution becomes

where -2 indicates the 2D Fourier transform. Translation
of the image can be represented as a coordinate transforma-
tion in which the x coordinate increases linearly with time.
Let r be the speed of horizontal motion. If we write a' = ()
for the transformed coordinates, then

a'= I t) = Aa, A= iF r] _ (5)

From the general expression for the transform following an
affine coordinate transformation (any combination of scaling,
rotation, and translation),3 7 we find that

(6)

where the superscript [ IT indicates the matrix transpose
operation. Since

(A-1)T=[l °,

we end up with

c(x - rt, t) -2 (u,w + ru).

(7)

(8)

Graphically this means that moving the image shears its
spectrum in the w dimension. Spatial frequencies are not
changed, but all temporal frequencies are shifted by minus
the product of the speed and the spatial frequency, -ru. This
result is easiest to picture for an image that was static in time
before the introduction of motion, as in Fig. 1. The spectrum
of the static image lies entirely along the u axis (all signal
energy is at 0 Hz). When the image moves, the spectrum is
sheared as described above, so that the result lies along a line
through the origin with a slope of -r.

2. Three-Dimensional Case
The preceding can be generalized to three dimensions. If the
velocity is r = (r, ry), the moving image and its transform are
then

c(x - rt, y - ryt, t) *3 c(u, v, w + rxu + ryv). (9)

W

cr(x, y, t) = c(x - rt, y - ryt, t). (2)

B. Fourier Transform of a Moving Image
Given an arbitrary space-time image c(x, y, t), and its Fourier
transform (u, v, w), we seek a general expression for the
transform of this image as it undergoes translation at a con-
stant velocity r.

1. Two-Dimensional Case
For simplicity, we develop the two-dimensional (2D) case of
c(x, t). This would be adequate to describe images without
variation in the vertical dimension, for example, a vertical line
or grating. We adopt the following vector notation:

a = (x) , b = (j), (3)

where u and w are the spatial- and temporal-frequency vari-
ables corresponding to x and t, respectively. Then a function
and its 2D Fourier transform can be written as

c (a) -2 (b), (4)

U 0

U

0

Fig. 1. The effect of motion on the Fourier transform of a 2D
space-time image. The effect is shown for a single representative
component of spatial frequency uo. The open circles show the lo-
cation of the components of the static image. The dotted circles show
the locations when the image moves with speed r. Each transform
point is sheared in the w dimension by an amount -ru, as indicated
by the arrows.
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Each temporal frequency is shifted by an amount -(ru +
ryv). If the original image was static (w = 0), then the new
temporal frequency will be equal to this quantity. Since it
will play an important role in subsequent developments, we
note that this quantity is the dot product of the two-dimen-
sional spatial frequency vector f = (u, v) and the image-ve-
locity vector r = (rx, ry). Three possible expressions for the
temporal frequency of each component of the spectrum of an
image in motion are then

w = -r- f = -(r.u + ryv) = -rf cos( - a), (10)

where 0 is the direction of image motion and a is the orienta-
tion of the spatial-frequency component. This quantity can
be seen to be the product of the spatial frequency f and the
component of the velocity in the direction equal to the or-
ientation of the grating.3 8 Note that the two-dimensional
result described earlier is a degenerate case of this general
outcome.

Geometrically, image motion changes the static-image
transform, which lies in the u, u plane, into a spectrum that
lies in an oblique plane whose intersection with the u axis has
a slope of -ry and whose intersection with the v axis has a
slope of -rx (the dihedral angle of the plane will be tan- r).
To illustrate, consider a stationary sinusoidal grating of fre-
quency f and orientation a. As illustrated in Fig. 2, its
transform is a pair of three-dimensional (3D) impulses at uo,
vo, 0 and -uo, -vo, 0, where u0 = f cos a and vo = f sin a. If
the grating moves in direction 0 at speed r, applying Eq. (10)
shows that the spatial frequencies will not change, but the
temporal frequencies will shift to minus and plus rf cos(O -

a), respectively. These two points lie at opposite ends of a
line through the origin.

In summary, the spectrum of a stationary image lies in the
a, v plane. When the image moves, the transform shears into
an oblique plane through the origin. The orientation of this
plane indicates the speed and direction of motion.

The preceding discussion shows that it is possible to asso-

V

w

Fig. 2. The effect of motion on the transform of a 3D space-time
image. The effect is shown both for a plane representing the full
spectrum and for a single representative component of spatial fre-
quency f and orientation a. The solid plane and filled circles show
the location of the spectrum of the static image defined by w = 0.
Motion at velocity r shears the spectrum into the plane w = r b, as
shown by the dashed-dotted plane and dotted circles. The arrows
indicate the displacement of a single spatial-frequency component.

Fi. .example o dc ami .u .i . . . T.in t

.: :: ~~~~~~.::.- ....... :
~~~~~~~~. . . . . . .. ... . . . .

-. - . .. ..

~~~~~~~*. ..... . . . .. . . . . . . . .... . . .

Fig. 3. An example of direction ambiguity. The motion of the
contour seen through the aperture is consistent with any of the ve-
locities a or b or c (after Marr and Ullman). Note that all possible
velocities have the same velocity component orthogonal to the con-
tour.39

ciate energy in particular regions in spatiotemporal frequency
space (for example, the one pictured by the dotted circles in
Fig. 2), with particular image-velocity components. By fil-
tering specific regions, it is therefore possible to detect
image-velocity components of particular values. This ob-
servation forms the basis for the development of our scalar
motion sensor. However, as noted below, a single image-
velocity component is ambiguous. The ambiguity must be
resolved by combining several measurements of different
components of the image velocity.

C. Direction Ambiguity
When a straight contour moves behind an aperture (Fig. 3),
its direction is ambiguous. The stimulus is consistent with
a range of velocities whose directions cover 180 deg. This has
been called the aperture problem.3 9 In fact, the aperture is
not critical, for the same ambiguity will result from a pattern
of infinite extent, provided that all its frequency components
have the same orientation. The aperture plays its role by
limiting the visible portion of a pattern to a region within
which only a single orientation is present.

This ambiguity is easily seen in the frequency-space di-
agram of Fig. 2. The plane, which contains spatial-frequency
components at all orientations, uniquely defines an image
velocity of r, 0. However, the solid circles, which represent
a single component with just one orientation, lie within many
possible planes and are thus consistent with many possible
velocities. Similarly, a moving image whose spatial
frequencies all have the same orientation has a spectrum that
lies along a straight line through the origin. This line is con-
tained within an infinite number of planes and is thus con-
sistent with an infinite number of velocities. Specifically, if
the orientation of the image components is a, and the speed
in direction a is r, then the transform (and image) corre-
sponds to any velocity ro, 0 such that

ro = r cos(G - a). (11)

This ambiguity has traditionally been a problem for motion
sensors that operate on individual oriented components in the
image. The problem of how these ambiguous oriented com-
ponents are resolved into a single unambiguous velocity es-
timate is dealt with in Section 4.
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D. Summary
In Section 1, we observed that moving images are sensed in
terms of their oriented 2D spatial-frequency components.
Here, we have shown that the spectrum of a moving 2D spa-
tial-frequency component occupies two regions at opposite
ends of a line through the origin. A sensor designed to filter
such antisymmetric regions in frequency space should
therefore sense these moving components. This sensor is
constructed in Section 3. However, as noted in Subsection
2.C, individual oriented components are ambiguous as to di-
rection, in that each indicates only one scalar component of
the image velocity. Therefore additional steps must be taken
to remove this ambiguity. We take up this point in Section
4.

3. THE SCALAR MOTION SENSOR

We construct our model in two stages. The first stage is an
array of linear sensors that are selective for 2D location, 2D
spatial frequency, and direction. Because, at any moment
in time, each produces only a single number rather than the
vector required to specify velocity, we call it a scalar motion

sensor. The second stage, discussed in Section 4, is called the
vector motion sensor.

The scalar sensor can be described in two ways. One is a
mathematical derivation; the other is a physical or physio-
logical description, without reference to mathematical detail.
We begin with the mathematical treatment.

The overall mathematical structure of the scalar sensor is
illustrated in Fig. 4. It is an assembly of spatial and temporal
filters each of which has simple properties. In assembling
these components, two points should be remembered:

(1) When several filters are in series, their order is irrel-
evant. This is formally expressed in the commutative prop-
erty of convolution, f * g = g * f. Consequently, the order in
which we introduce components is not necessarily the order
in which their physical analogs are connected.

(2) The filter that we are constructing operates on the
three dimensions x, y, t or in frequency space u, v, w. A
separable filter is one in which the impulse response is the
product of one-dimensional (ID) components. Separability
permits certain simplifications; for example, the 2D or 3D
transform of a separable function is the product of the sepa-
rate ID transforms, and the 2D or 3D convolution of separable
functions is the product of their separate D convolutions.
For these reasons, we will deal separately with temporal,
horizontal, and vertical filters, which should be understood
as the ID components of 3D filters. For example, f (t) is the
time component of a 3D impulse response f (t)3(x)6(y).

TEMPORAL FILTER

TEMPORAL DELAY

A. Basic Temporal Filter
We introduce a temporal filter with impulse response f (t) and
transfer function 7(w). We have tentatively identified this
function with the temporal sensitivity of the human observer
to relatively low spatial frequencies.2 1-23 ,40 ,41 A useful ana-
lytic approximation to these data is provided by the impulse
response

f(t) = W1l(t) - th(0), (12)

SPATIAL FILTER

HILBERT SPATIAL
FI LTER

where

fi(t) = u(t) (t/r)ni-le-t/ri
rini- 1)! (13)

and u(t) is the unit step function. The function f is an n-
stage low-pass filter, essentially as used by Fourtes and
Hodgkin.4 2 This analytic form of f(t) has been used elsewhere
to model temporal contrast-sensitivity data.41 43 The filter
transfer function is given by the Fourier transform of the
impulse response,

7(w) = (Ih(w) - V12(W)I, (14)

where

HILBERT TEMPORAL
F LTER

Fig. 4. Mathematical structure of the scalar motion sensor.

Jj(w) = (i27rw i + )- (15)

We have chosen parameters (t = 0.9, 1 = 0.004, 2 = 0.0053,
n = 9, n2 = 10) for this filter that fit the data of Robson.2 '
Impulse response, amplitude response, and phase response
of the filter are shown in Fig. 5. The operation of the sensor
is not critically dependent on the particular version of f(t)
selected. An alternative choice might be the temporal im-
pulse responses of individual visual cells, but these appear to
be quite varied.
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Fig. 5. A, Impulse response; B, amplitude response; C, phase response of the basic temporal filter. The symbols in the center panel are con-
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Fig. 6. Spatial impulse responses of a, main and b, quadrature paths. The spatial impulse response of the
to that of the main path, a. The gray background indicates a value of 0.

e basic spatial filter is equivalent

B. Basic Spatial Filter
We next introduce a spatial filter with impulse response g(x,
y) that is separable into horizontal and vertical compo-
nents

g(x, y) = a(x)b(y), (16)

a(x) = exp[ -(x/X)2 ]cos(2rux), (17)

b(y) = exp[-(y/X)2]. (18)

This impulse response is pictured in Fig. 6. It is the product
of a cosine and a Gaussian in the horizontal dimension and is
a Gaussian in the vertical dimension. The frequency of the
cosine is us, and the Gaussians both have spreads of X. This
function, sometimes called a 2D Gabor function, is a good
approximation to the receptive-field weighting function of
so-called simple visual cortical cells in cat and monkey44 and
presumably in the human. It has also been used as a model
of the basic spatial operator in theories of human spatial vi-
sion.45' 46

The transform is

g(u, v) = a(u)5(v), (19)

d(u) = \WX/2(expl-[7rX(u -U)]21

+ expl-[rX(u + U,)]
2
)),

6(v) = /-X exp[-(7rlv )2 ].

(20)

(21)

C. Size of the Spatial Sensor
The parameter X governs the size of the Gaussian component
of the spatial impulse response. Here, we set it equal to a
constant p times the period of the sinusoid,

X = P/f. (22)

Thus the size of the sensor scales inversely with its spatial
frequency. This has the consequence of fixing the log-fre-
quency bandwidth of the sensor. We assume that p =
3N/UiH2hr = 0.795, in which case this fixed log bandwidth is
one octave. This particular bandwidth is chosen to be con-
sistent with available psychophysical and electrophysiological
evidence.

With the introduction of the basic spatial and temporal
filters we have traversed the first two boxes in Fig. 4. The
resulting transfer function will be the product of the temporal
and spatial transfer functions. Since each of these has two

C

1. . I .

A. B. Watson and A. J. Ahumada, Jr.



Vol. 2, No. 2/February 1985/J. Opt. Soc. Am. A 329

lobes, one on either side of the frequency origin, their product
will have four lobes rather than the two antisymmetric lobes
required by a direction-selective sensor (see Fig. 1). Our next
step then is to null two of the four lobes of the filter transfer
function and thus make the sensor direction selective. We
do this by means of a Hilbert filter.

D. Hilbert Transform _
We digress to introduce the Hilbert transform, which is dealt D.. / ..

with in most standard treatments of linear systems theory but . .v. ** . .

is rarely seen in the vision literature. The Hilbert transform a-
of a function g(x) is given by h(x) * g(x), where

h(x) = -1/rx. (23)

The Hilbert transform is a linear filter with an impulse re-
sponse that is an inverted hyperbola. The transfer function
of the filter is the Fourier transform of h(t):

h(u) = i sgn(u). (24)

This filter, pictured in Fig. 7, has the remarkable property of 0 50 ISO 150 200 250

Time (msec)

Fig. 8. Temporal impulse responses of main (solid line) and quad-
rature (dotted line) paths of the scalar motion sensor.

unit gain at all frequencies combined with a constant phase
lag of.,ir/2 for positive frequencies and -r/2 for negative
frequencies. It converts odd functions into evens, and evens
into odds. Two functions that are Hilbert transforms of each
other are said to form a quadrature pair.

I__ ___ ___ ___ ___ ___E. Time Delay
The next element in the sensor is a time delay of r. This can
be represented by convolution by a delayed impulse 8(t - r).
The delay has a transfer function of exp(-i27rwr). This delay
is introduced to ensure that the introduction of the Hilbert
filter, described below, does not result in a noncausal temporal
impulse response.

F. Main and Quadrature Paths
a At this point, the signal path branches into what we will call

main and quadrature paths. The quadrature path is subject
to a Hilbert transform in each of the dimensions of t and x.

G. Hilbert Temporal Filter
In the quadrature path, the signal passes through a temporal
Hilbert filter, so that the temporal impulse responses of main
and quadrature paths are now f(t - r) and f(t - r) * h(t),
respectively. These are illustrated in Fig. 8. The Hilbert
impulse response, when viewed as a function of time, is neither
causal nor physically realizable. However, we need only en-

I I sure that the result of the transform (the dashed curve in Fig.
8) is causal and realizable, which is easily done through suit-
able choice of the delay r. The Hilbert impulse response
contains infinite values, but we make use of it in the frequency

..................... domain, where it presents no difficulties of calculation.

H. Hilbert Spatial Filter
The quadrature path is now subjected to another Hilbert
transform, this time in the horizontal spatial domain. The

b resulting spatial impulse response in the quadrature path is
Fig. 7. The Hilbert filter. a, Impulse response. b, Transfer func-
tion. The dotted line indicates an imaginary value. [h(x) * a(x)]b(y) (25)
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Fig. 9. a, Impulse response and b, amplitude response of a scalar
sensor for leftward motion (direction = 0). In a, the axes are x (hor-
izontal) and t (vertical). In b, they are u and w.

with a Fourier transform

i sign(u)d(u)i(v) (26)

Equation (20) shows that (u) is two Gaussians at u and - 8
with spreads of 1/(7rX). If, as in the present case, X > 2/(7ru,)
then each Gaussian will be almost entirely on one side of the
origin, in which case the transform will be the sum of two
complex Gaussians, one positive at us, the other negative at
-us. Taling the inverse transform shows that the resulting
impulse response in the quadrature path is simply (approxi-
mately) equal to minus a sinusoid multiplied by a Gaussian.
Thus the spatial impulse responses of the main and quadra-
ture paths are even and odd (cosine and sine phase) Gabor
functions. They are shown in Fig. 6.

I. Sensor Transfer Function
We have applied Hilbert filters of t and x to the quadrature
path; hence its transfer function 6t q will differ from that of the
main path mm by multiplication by the transfer functions of
these two Hilbert filters,

lm(u, v, w) = a(u)6(v)J(w)exp(-i27rwr), (27)

mq(u, v, w) = -fm.(u, v, w)sign(u)sign(w). (28)

The final step is to combine the two paths. For a sensor of
rightward motion, we add the two paths,

fftr(U, v, w) = mm + mhq = a(u)6(v)J(w)
X exp(-i2rwr)[1 - sign(u)sign(w)]. (29)

The modulus of this transfer function (the amplitude re-
sponse), and the corresponding impulse response, are shown
in Fig. 9. Note that the amplitude response occupies only the
second and fourth quadrants of the u, w space. Thus the ef-
fect of adding the quadrature path is to null two of the four
lobes of the transfer function, so that it occupies only two di-
agonally opposite quadrants in frequency space. Recall that
these are the quadrants occupied by an image moving to the
right (Fig. 1). An image moving to the left will occupy the first
and third quadrants and will therefore produce no response.
The sensor is therefore selective for motion to the right.

J. Generalization to Other Directions
Each scalar sensor has a particular spatial frequency fs and
direction s. These numbers can be compactly represented
by a vector s = ( 8 , us), where us = s cos As and v = fs sin 0.
We will call this the directed frequency of the sensor. So far
we have developed the case of a sensor for horizontal motion
to the right, that is, = 0. The sensor for an arbitrary di-
rection 0t is obtained by rotating the x, y space by -0. This
means that we are using a new spatial weighting function with
orientation O. In the frequency domain, this has the effect
of rotating the transform by 0,, which we accomplish by the
coordinate transformation

u' = u cos As + v sin 0, u' =-u sin + v cos . (30)

Let G = rX2/2. This is the overall gain of the motion sensor.
Then the transfer function of a sensor of directed frequency
is

rhs(f, w) = Gfexp[-(r1s - fl) 2] + exp[-(rXgs + )2]1
X J(w)exp(-i2wrrw)[1 - sgn(s - f)sgn(w)]. (31)

Note that the first term is a pair of Gaussians at s and -s.
The impulse response and the amplitude response of the
scalar sensor for one direction are shown in Fig. 10.

K. Cardinal Form for a Direction-Selective Sensor
It is evident that the essential feature of our direction-selective
sensor is that it responds in just two antisymmetric quadrants
of frequency space. In the preceding sections we have de-
veloped a particular example of such a sensor, but it is worth
considering which of its features are essential to meet the
above criterion. A canonical form for our linear direction
selective sensor (in the x direction) is

a(x)b(y)c(t) * [(x, y, t) + (y)h(x)h(t)], (32)

where a, b, and c are arbitrary separable functions of space
and time. In other words, the filter consists of the product
of separable functions, plus its own Hilbert transform in x and
t. The canonical forms for other directions are obtained
through suitable coordinate rotations. Thus it is the structure
of form (32) that gives the direction selectivity; the functional
forms of a, b, and c have been chosen to fit other aspects of
human motion perception.

I
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L. Simple Description of the Scalar Motion Sensor
As promised at the start of Section 3, we can now translate the
preceding discussion into a simple physiological description
of the sensor. We imagine a pair of visual neurons, with
spatial receptive fields as pictured in Fig. 9. The functions
in this figure now describe the influence of light upon each cell
as a function of the distance of the point of light from the
center of the receptive field. Second, we interpret the two
curves in Fig. 8 as the temporal impulse responses of the two
cells. For example, the solid curve in Fig. 8 is the time re-
sponse of the even cell (Fig. 9a) to a brief pulse input, whereas
the dashed curve is the similar response for the odd cell. We
then imagine a third cell that simply adds the responses of the
odd and the even cells. This third cell will be direction se-
lective and is a physical embodiment of our scalar motion
sensor.

M. Response of the Scalar Motion Sensor
The response of the sensor to an arbitrary jnput is given di-
rectly by convolution

r(x, y, t) = c(x, y, t) * m(x, y, t) (33)

or by way of the convolution theorem

r(x, y, t) -3 d(u, v, w)fi(u, v, w). (34)

The mathematical development of the sensor as a filter results
in a response that is itself a 3D function of space and time.
Yet when speaking about a sensor as the theoretical analog
of a single visual cell we expect its response to be a function
of time only. This apparent contradiction is resolved by
viewing r(x, y, t) as specifying the response at time t of the
sensor centered at x, y.

What is the form of this temporal response? The sensor
removes all spatial frequencies save those in the neighborhood
of s. As noted in Subsection 2.B.1, the input at s has a tem-
poral frequency of s * r. Since the sensor is linear, the output

will have the same frequency as the input. Thus the temporal
response of the sensor will approximate a sinusoid with a
temporal frequency of

ws = s r. (35)

Comparing this with Eq. (10), we note the following useful
result: The temporal frequency of the sensor response ap-
proximates the component of the image velocity in the sensor
direction, multiplied by the spatial frequency of the sensor.
We can think of the temporal frequency as coding one com-
ponent of the image velocity.

N. Selectivity of the Scalar Motion Sensor
Examination of the transfer function of the motion sensor
reveals its selectivity for direction, orientation, spatial fre-
quency, temporal frequency, and the like. A simple way of
showing this is by considering the response to sinusoidal
gratings of various spatial frequencies, orientations, directions
and velocities. Since the system is linear, the temporal re-
sponse to this stimulus will be sinusoidal with the same tem-
poral frequency as the input. It will have an amplitude that
can be read directly from the amplitude response given in Eq.
(31). For example, consider a 2D sinusoid of spatial frequency
f and velocity r. From Eq. (31) it is evident that the response
will be a sinusoid of amplitude

G exp[-(7rXl s - fl)2jI(I sI I fl )l [1 - sign(s r)]. (36)

This expression can now be used to illustrate the sensitivity
of the sensor to spatial frequency and direction.

1. Spatial Frequency
If grating direction matches that of the sensor ( = Os), then
the sensor response amplitude is given by

G exp-[fr>( - f)] 2JI,(rf)I. (37)

When the temporal frequency w = rf is fixed, this amplitude

V fff 7w t

Fig. 10. a, Impulse response and b amplitude response of a scalar sensor for motion in direction = 3240. In a, frames show successive time
samples of 12.5 msec. In b, frames show successive temporal frequency samples of 5 Hz, with the origin in frame 9.
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Fig. 12. Normalized response amplitude of the scalar motion sensor
as a function of the direction of a moving sinusoid [Eq. (38)] with p
= 0.795.

varies as a Gaussian function of the distance between grating
and sensor frequencies. When X = 0.795/f, as assumed here,
the Gaussian has a width of one octave (2f/3) at half height.
If the velocity is held constant, then 1(rf)l will also vary,
though not as rapidly as the Gaussian. These two cases are
slices through the 3D amplitude response shown in Fig. 10b.
They are illustrated in Fig. 11. The figure shows that at very
low or very high speeds, the spatial-frequency band of the
sensor can be shifted somewhat from its nominal center fre-
quency.

2. Direction
The sensitivity of the sensor to the direction (and orientation)
of a grating input can be determined by setting the spatial
frequency of the grating to that of the sensor (f = fs). Then
the sensor response amplitude as a function of grating direc-
tion will be

G exp(-r 2s2 [ 2 + f2- 2ff cos(0 - Os)])1f(rf)l. (38)

The variation with orientation is captured in the exponential
term, which simplifies to

exp [27r sin (- )]} (39)

This function is drawn in Fig. 12. Making use of the ap-
proximation sin(x) x for small x, we see this is approxi-
mately a Gaussian.function of the difference in direction be-
tween the sensor and the grating:

exp{-[7rp(0 - A.)]21- (40)

This function is not visually discriminable from Eq. (38)
shown in Fig. 12. If p = 0.795, as has been assumed here, then
the sensor has an direction bandwidth of about 38°.

4. VECTOR MOTION SENSOR

A number of the results cited in Section 1, particularly those
that deal with events near detection threshold, suggest that
each direction is served by an independent sensor, such as the
scalar sensor developed in Section 3. Other results, however,
particularly those that involve estimating the apparent speed
and direction of a superthreshold pattern, indicate the coop-
erative action of a number of sensors tuned to different di-
rections.

Furthermore, we have seen that the output produced by an
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individual scalar sensor is ambiguous with regard to the speed
and direction of the image. Here, we show that this ambiguity
can be resolved by combining the responses of a number of
sensors. This combination is done by the second stage of the
model, which we call the vector motion sensor. Before we
build the vector sensor, however, we describe how the indi-
vidual scalar sensors are distributed over space, spatial fre-
quency, and orientation.

A. Distribution of Sensors
We have developed a model of a single sensor tuned for a
particular location x8, y8, spatial frequency f8, and direction
A. The full model contains many sensors, replicated over
space, frequency, and orientation according to the following
rules, which are simplified from an earlier model of spatial
sensing. 46

1. Spatial Frequency
As noted in Section 3, we have assumed that each sensor has
a half-amplitude spatial-frequency bandwidth of one octave.
This constrains the choice of the number of separate fre-
quency bands to be analyzed, since too many will be redun-
dant, whereas too few will result in a loss of information. We
adopt an interval of one octave between bands. To cover the
range of visible frequencies, we assume a set of eight sensor
center frequencies of 1/4, 1/2, 1, 2, 4, 8, 16, and 32 cycles/deg.
Further investigation may reveal whether all these bands are
necessary or whether, for example, motion analysis is confined
to lower spatial frequencies.

2. Direction
As noted in Section 3, the orientation bandwidth of each
sensor is about 380. To cover the full range of directions at
intervals of about one bandwidth, we therefore assume 10
different possible sensor directions, moving in steps of 36°
from 00. These 10 directions can be constructed from the five
orientations and two phases assumed in the spatial model
described by Watson.4 6

3. Spatial Sampling
Loss of information through aliasing will be prevented if the
sampling density of the sensors (the inverse of the distance
between adjacent sensors) is at least twice the full-amplitude
bandwidth of the sensor. We approximate this condition by
use of a sampling density of four times the center frequency
of the sensor (six times the half-amplitude bandwidth). With
this density, the sampling artifact and the original spectrum
overlap at a negligible amplitude. The actual sampling
density required to account for human performance is a
subject for further study.

Since the sampling density is proportional to frequency,
there will be many more sensors at high spatial frequencies
than at low. For example, in one square degree of visual field
there will be one sensor of the lowest frequency (1/4 cycle/deg)
but 16,384 sensors of the highest frequency (32 cycles/deg).

There are several aspects of the way in which sensors are
likely to be arranged in the human visual system that we have
not yet tried to include in our model. Most prominent is the
way in which sensors may change in size with distance from
the fovea. Second is the approximate hexagonal packing of
sensors across the visual field. Both features are included in
the model on which the spatial features of this model are

based, but for simplicity we assume here a homogeneous
square sampling array.

B. Direction Group
As noted, each scalar sensor provides ambiguous information
about the image velocity, but this ambiguity can be resolved'
by combining scalar sensor responses. This combination is
done within each set of 10 scalar sensors at the same location
x, ys and spatial frequency f, that differ in direction 0t. We
call each such collection a direction group. Consider an image
moving over this group. If the image contains many different
orientations at frequency f, then many members of the group
will respond. Since each corresponds to a different direction,
no single one can indicate the actual direction in which the
image moves. How do we deduce this actual direction from
the responses of the group?

The response of any one scalar sensor does not indicate the
velocity because of the direction ambiguity problem discussed
earlier. Each scalar sensor conveys only one component of
the image-velocity vector-the component in the sensor di-
rection. But the responses of several sensors in the direction
group provide several linearly independent components of the
velocity vector. Therefore the full velocity vector can be
determined from several (ideally, just two) scalar-sensor re-
sponses. This conversion of the scalar-sensor responses of
the direction group to a single estimate of image velocity is
done by the vector sensor.

Recall that the image-velocity components are coded in the
temporal frequency of the scalar-sensor responses. If the
image moves with velocity r, then the temporal frequency in
a sensor of frequency s will be w8 = r * s. Converting this to
polar terms, we see that the pattern of temporal frequencies
among the sensors within the direction group is

w = rf8 cos(O - 00 (41)

where (r, 0) are the speed and direction of the image and (fA,
A) are the spatial frequency and direction of the sensor. This
function describing the temporal frequency of the response
of the sensor is a cosine with a phase equal to the actual di-
rection of image motion and with an amplitude equal to the
product of sensor frequency and image speed. Only half of
the cosine can be estimated, since for half of the possible di-
rections the sensor will be silent (the sensor responds only if
its direction is within 90° of the direction of image motion).

FREQUENCY METER VELOCITY
SENSORS METERS RESPONSES ESTIMATOR

IMAGE_

Fig. 13. The structure of the vector motion sensor.
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There are a number of possible ways to extract the image ve-
locity from this pattern of responses. The one that we have
pursued is first to measure the temporal frequency of each
scalar-sensor response (by means of a frequency meter) and
then to fit Eq. (41) to the resulting quantities. This sequence
is illustrated in a process diagram of the vector motion sensor
in Fig. 13.

C. Inhibition between Opposite Directions
When an image moves past a direction group, it will excite half
of the sensors in the group. This is because each sensor has
a direction range of 180. However, noise may generate re-
sponses in the remaining half of the sensors. We know,
however, that only one of the pair of sensors tuned for opposite
directions should respond to an image in motion. Thus we
can null the noise responses by making each sensor compete
with its opposite number. The larger of the two responses is
preserved; the smaller is discarded. In fact, to make things
simpler, we replace the smaller with the negative of the larger.
The result is that the temporal frequency as a function of
sensor direction is now a complete cycle of a cosine, rather
than just a half cycle.

D. Summary
The result of all of the preceding operations will be a set of
eight sampled vector fields, one per scale or spatial-frequency
band. Each sample will be a vector indicating the velocity
(speed and direction) of the image Gabor component at that
location. The density of samples in each field will be pro-
portional to the square of the spatial frequency. In Section
5, we describe some specific details of how these vector fields
may be computed. Although we do not attempt at this time
to provide a specific linking hypothesis between these vectors
and perception, some common-sense predictions are possible.
For example, if the vectors at all scales and locations agree,
we predict that the image will appear to move with the spec-
ified velocity.

5. IMPLEMENTATION OF THE MODEL

A. General
The current implementation is written in the language c under
the UNIX operating system. It currently resides on a SUN
computer (an MC68010-based virtual-memory microcom-
puter with dedicated graphics display). The software is
portable to other UNIX installations and will be described in
a subsequent report.

B. Terminology
The input to the model is a continuous distribution of lumi-
nance or of contrast over the three dimensions of x, y, and t.
A discrete representation of this input can be constructed by
Nyquist sampling, resulting in what we will call a movie, a 3D
array of values with dimensions W (width), H (height), and
L (length). The values in the array may be either real or
complex. A movie may be used to represent a sequence of
images, its 3D Fourier transform, or any data set that fits
within this structure. When used to describe a discrete
moving image, the natural units of the movie are pixels and
frames (or widths and lengths). When used to describe the
transform of a discrete moving image, convenient units are
cycles/width and cycles/length.

C. Scale
The input is analyzed in parallel by eight sets of sensors, each
set selective for a different spatial-frequency band. The ac-
tion of each set is identical to that of every other except for a
change of spatial scale. This scale invariance allows us to
describe the action of the sensors at just one scale k.

Consider an input digitized to a movie of size W X H X L.
In the following discussion, we assume for simplicity that W
= H. The digital movie contains spatial frequencies up to the
Nyquist limit of 2-1 W cycles/width. The highest-sensor-
frequency band considered will be centered at 2-2 W cycles/
width. For convenience, we assign a scale number of 0 to this
highest-frequency set of sensors applied to a given input.
Since the sensors change spatial frequency in octave steps, the
scale-k sensors will have a spatial-frequency passband cen-
tered at 2 -(+2) W cycles/width.

Scaled Inputs The band-limited character of the sensors
at each scale also permits an important computational econ-
omy. As noted, the input contains spatial frequencies up to
W 2-1. The scale-0 sensor has a center frequency of W 2-2
and an effective passband cutoff one octave about this point,
that is, W 2-1, equal to the cutoff frequency of the input [in
fact, this is a very conservative figure, as the sensor frequency
response has fallen by about 99.8% (54 dB) at this frequency].
At scale 1, the cutoff frequency of the sensor is reduced by a
factor of 2 to W 2-2. Frequencies above this point may be
removed from the input without altering the response. After
these frequencies are removed, the number of samples re-
quired to define the input may be reduced by a factor of 2 in
each spatial dimension. We define the shrink operator (de-
noted Sh) as one that removes the frequencies above one half
of the Nyquist limit and then reduces the number of samples
in each spatial dimension by a factor of 2. Our shrink algo-
rithm is described in Fig. 1 4 .4749 We define Ck, the scale-k

Co0 Co0

fft

C,

Fig. 14. The shrink algorithm. The original image of width W is
denoted C0. Application of a fft results in C0o. It contains frequencies
up to 2-1 W. A square core, which contains frequencies up to 2-2 W,
is inverse transformed to yield a movie C1 that is half as large in each
spatial dimension. The procedure can be repeated to yield C2, and
so on. The algorithm can be generalized to other size ratios and to
the time dimension. This procedure is similar to other pyramid
schemes47 -49 but has the advantage of precisely band limiting the
signal before subsampling.
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quency domain, multiplying, and inverse transforming. Each
spatial sample in the result is the time waveform of the re-
sponse of the sensor at one location. This sequence of oper-
ations for scale k and direction I is pictured in Fig. 15.

1. Sensor Impulse Response
The impulse response of a sensor at scale 0 and direction I is
defined by a real movie M0,1 of the same width, height, and
length as the input. The center spatial frequency of the
sensor is W 2-2 cycles/width, where W is the input width in
pixels. For example, if the input is a movie of width 32, height
32, and length 16, then the sensor impulse response at scale
0 will be the same size and will have a center frequency of 8
cycles/width. Values of the impulse response are sampled
from Eq. (31). Figure 11a shows an example of an impulse
response.

2. Sensor Transfer Function
To obtain the transfer function of the sensors at scale 0, the
scale-0 impulse response is transformed:

fMft -
-s Mo, 1, (43)

Fig. 15. Computation of Ral, the sensor response at scale k, direction
1. Shaded objects are Fourier transforms.

where fft indicates a fast Fourier transform. The result is a
complex movie Mo,1 of size W X H X L that defines the fre-
quency response of the sensor up to W 2-1 cycles/width in
both u and v and 40 Hz in w. Figure 11b shows an example
of the magnitude of the transfer function of a sensor.

representation of the input, to be the result of applying the
shrink operator to Ck-1, and we write this as

Sh

Ck 'Ck+l (42)

The scale-0 representation Co is the original input. Since the
number of samples at each scale is reduced by a factor of 4
from that at the previous scale, the computational cost of re-
peating operations at multiple scales is greatly reduced. In
fact, this multiple-scale representation of the input is less than
4/3 as large as the original input. Note also that since most
processing occurs in the frequency domain, the shrink oper-
ation requires essentially no additional computation.

D. Input
The input is given as a movie C0 of normalized real floating-
point values, with dimensions W X H X L. The movie di-
mensions can be mapped to world coordinates (degrees of
visual angle, seconds) by a choice of scale factors. In the ex-
amples shown, the spatial scale was left undefined, but the
time scale was set at 80 frames/sec.

E. Summary of Linear Operations
The first stage of the model is a set of linear sensors that differ
in scale (spatial frequency), direction, and location. The re-
sponse of a sensor of a particular direction, scale, and location
is determined by cross correlating the sensor weighting
function with the input. The responses of all sensors of a
particular direction and scale are computed by convolving the
sensor impulse response and the input and by sampling the
result at the sensor locations. The convolution is done by
transforming the impulse response and the input to the fre-

3. Scaled Transfer Functions
The scale-h sensor transfer function is equal to the scale-h -
1 transfer function minified by a factor of 2 in u and v di-
mensions. It can be obtained by subsampling the transform
of the previous scale in u and v dimensions. We denote this
subsampling operation by the symbol Su (Fig. 16). In this
way, the sensor transfer functions for the various scales are
easily obtained from the transfer function at scale 0:

Su

Mk,l Mk+1,1l

4. Sensor Response
The input is Fourier transformed,

f ft _
CM C&,

(44)

(45)

yielding a complex movie of size W 2 -k X H 2 - X L. The
input and impulse response transforms are scalar multi-
plied,

Mkj Ck = Rk,, (46)

7 ~~Su

.. D .

M., M ars,/,

Fig. 16. Illustration of the frequency-subsampling operator Su. The
array at each successive scale is obtained by sampling every other
element in u and dimensions.

47 fft k ft

(4-

4 fft-I
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and the result is inverse transformed, yielding the response
fft-l

Rkj )- Rag. (47)

The value at x, y, t in this real movie specifies the response
of a sensor of scale k and direction I at location x, y sampled
at time t. (An example is pictured in Fig. 20, below.)

5. Border Effects
The method of convolution used above implicitly assumes that
the input is periodic in x and y. Hence the outputs at the
borders are due in part to input from the opposite border.
These invalid results must be removed by stripping away a
border (N - 1)/2 elements wide from the output, where N is
the width of the nonzero extent (support) of the impulse re-
sponse. Here N is approximately seven pixels independent
of scale, so we remove a border three pixels wide from the
output of each convolution (an alternative would be to ensure
that each input had a null border at least three pixels
wide).

F. Summary of Nonlinear Operations
The operations performed in the second stage of the model
are nonlinear. They combine responses of sensors within a
velocity group, which up to this point have been kept separate.
(Recall that a velocity group is the set of sensors of the same
scale and location that differ in direction.) The principal
steps are

(1) Measure the temporal-frequency spectrum of each
sensor response.

(2) Select the temporal frequency with the largest mag-
nitude.

(3) Find which of each pair of opposite-direction sensors
(within the same velocity group) has the larger magnitude,
save its frequency and magnitude.

(4) Within each velocity group, apply a fft to the vector
of temporal-frequency values, considered as a function of
direction.

(5) Use the amplitude and the phase of the first harmonic
in the digital Fourier transform to calculate speed and direc-
tion, respectively.

(6) Save the largest magnitude within each velocity group
as a measure of the strength of the response. If this magni-
tude is less than a threshold, assign the velocity "undefined"
to the sensor.

G. Measuring Temporal Frequency
Since the spatial-frequency spectrum of the sensor is a
Gaussian, it seems likely that the temporal-frequency spec-
trum of the response to a broadband stimulus would be
roughly Gaussian. The desired quantity would be the location
of this Gaussian. As a simple approximation to this, we have
determined the frequency at which the largest magnitude
occurs. Thus at each scale, direction, and location, a fft is
applied to the vector of time samples of the sensor response;
The frequency with the largest response magnitude and the
magnitude itself are saved. The result at this stage is, for each
scale k and for each direction, a movie of size Wk X Hk X 2.

1. Combining Responses within the Direction Group
In theory, only half of the sensors should respond to a moving
stimulus: Those with directions more than 90 deg away from

the direction of image motion should be silent. But since in
the human visual system and in this implementation there are
both noise and approximation, the sensors in the null direction
may not be truly silent. Therefore we use a sort of inhibition
to cancel their responses. Within each direction group, we
compare the magnitudes of each pair of oppositely directed
sensors. The larger is preserved; the smaller is replaced with
minus the larger. We do this rather than null the smaller only
to simplify the computations of Subsection 5.G.1. Finally,
we compare all thp magnitudes within the direction group and
preserve the largest. We will call this the strength of the di-
rection-group response.

The result at this step is, for each location and scale, a movie
of size Wk X Ha X (D + 1), where D is the number of direc-
tions (10). The array specifies, for each location, the peak
frequency as a function of direction (D values) and the
strength of the velocity-group response.

2. Estimating Speed and Direction
The frequency-versus-direction function at each location
should be a single cycle of a cosine with an amplitude equal
to the product of the sensor spatial frequency and the speed
of image-component motion and with a phase equal to the
direction of image-component motion. The amplitude and
the phase are computed as the first-harmonic results of a fft
on the frequency-versus-direction vector. The final output
for each scale is then a movie of size Wk X Ha X 3. The first
and second frames contain speed and direction estimates.
respectively, and the last frame contains the strength esti-
mates. As noted in Subsection 5.E.5, a border of width 3 has
been assigned a strength of 0.

6. RESULTS

We have applied our computational model to a small number
of test cases. The inputs were either digitally synthesized or

: -A

1 0

. I X 4 ie n 

Fig. 17. 3D Gaussian blob. The dimensions are W = 32, H = 32, L
= 16. The speed is v¶ pixels/frame, and the direction is 3150. The
spatial spread is two pixels; the temporal spread is eight frames.
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input (Fig. 18). Note that it consists of a Gaussian disk (broad
in u and v, narrow in w) that has been sheared into a plane at

S~~ff g l _ X 00 t0VX _ 45° to both the u and the axes. The energy in the fourth|

quadrant exists only for negative time frequencies (early
frames in Fig. 18), while energy exists in the second quadrant

only for positive frequencies. This should be compared with
the amplitude response of the sensor pictured in Fig. lib.

It is also of interest to examine the response of the scalar
sensors of one directed frequency (scale and direction) to the
Gaussian blob input. This is shown in Fig. 19. The response

Fig. 18. Amplitude spectrum of the Gaussian blob. Th ajxes ar
as in Fig. lib.

A•~ '~' 7> t 7<,~4~ ~,4,4 ,>@,7~~4St'Fig. 20. Rsoeoftevector sensors at scale 0 to the Gaussian
blob. Each arrow is an estimate of image velocity at the corre-

'7>'" ~ ~ ~ ~ ~ ~ ~ A~~~~"j ~~sponding spatial frequency and location. The contrast of the arrow
7/77>" ~ ~ ~ ~ ~ ~ ~~~~~nicates the strength of the response.

an rect1 -36' 9 1 1 .';«~

the spatial dimension smallto minimize execution time. The t i0 0 1fg@;g000t0900E- -V >iQ ! : t00

length of each input was 16 frames (200 msec). i 00 t l 0 C^0it00 ^ > 

A .T h r e e -D im e n s io n ali s Gs uon n i g . 1 7 . I t i s a 2 D s p ati al:00000 tt00 00'00.0 0 .§ 00 Z . f % 0 X 0 B 00 0ii yst 000X i;;f000 f S ;

T G a u s s i a n b o s s o n i i . 1 . I s a 2 p t a 0 0 0 0 0 0 0 0 0 0 X 0 0 0 w h o s e0 c o n t r a s t0 0 0 0 0 W 0 v a r i e s> a s0 0 aj 0 x G a u s i a f u c t o o f;0 00 t i m e0 0 0; 0 0 0 0

as ittraverses the field from upper left to bottom right. This 00 - t:0 0.00 0 00 0 90;0 <0: 0 i000;i00000500

is a useful input, because it contains all spatial frequencies and ;0000 00 0 4 ; $ 0 0 t 0 l00. 5f 5 ? 090 : 40 7

all move in the same clear direction. It also can be adequately ggX t;0V;tt : ;ttXVtS:: 0 :gXEV¢SEiE 

sampled at the low resolution we are using.-_
It is instructive to look at the amplitude spectrum of this Fig. 21. Vectr-sensor responses to the Gaussian blob at scale 1.
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Fig. 22. Simulated responses to the sum of two gratings of different spatial frequencies that move in different directions. The frequencies
were 2 and 8 cycles/width, the directions were 900 and 1800, and the speeds were both 1 pixel/frame. a, Response at the scale of the lower frequency.
b, Response at the scale of the higher frequency.

Fig. 23. Simulation of apparent motion. The input was as shown
in Fig. 17 with all but frames 6 and 8 blank. The output at a scale of
4 cycles/width is shown.

takes some time to develop and makes its first substantial
appearance in the upper-left-hand corner of frame 3. The
responses in the lower right-hand corner of the first four
frames are an artifact of the use of a circulant convolution
method and should be interpreted as frames 17-20 of the re-
sponse, wrapped around into the first four frames. Note that
the sensor passes only spatial frequencies near that of the
sensor, with the result that, for this input, the response looks
much like the spatial weighting function of the sensor moved

along the path of the input. For sensors of other directions,
the result would look the same, except that the amplitude of
the response and the orientation of the bars would be dif-
ferent.

Figure 20 shows the response of the vector sensors at scale
0. Since the input has a width of 32, this corresponds to a
spatial frequency of 8 cycles/width, the highest frequency
(smallest scale) that we can compute on this input. Each
arrow represents the response of one vector sensor. The speed
is indicated by the length of the arrow and the direction by the
angle of the arrow. In addition, the intensity of the arrow is
proportional to the strength of the sensor response. Arrows
have not been plotted whose intensity or length is less than
10% of the maximum within the picture.

The arrows point in the correct direction and have ap-
proximately the correct length. Furthermore, strong re-
sponses occur only along the actual path of motion. For this
input, at this scale, the model gives a good indication of the
true and perceived velocity of image components.

Figure 21 shows the response at the next scale (4 cycles/
width). The results are similar. There are fewer arrows be-
cause the sampling density of the sensors is lower at this scale.
The responses are less confined to the path of motion, as we
would expect of sensors with lower spatial resolution.

B. Coherent Gratings
We have simulated the experiment of Adelson and Movshon
described in Subsection 1.D. We first superimposed two
gratings with the same spatial frequency (8 cycles/width)
moving at 1 pixel/frame in directions of 90° and 1800. To the
human observer, this appears as a coherent plaid that moves
to the upper left (135°). The model response at a frequency
of 8 cycles/width, where the sensors are matched to the spatial
frequency of the stimulus, correctly indicated motion at about
the right speed in about the right direction.

We then added together a grating of 8 cycles/width and

a
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direction of 900 and one of 2 cycles/width and direction 1800,
both with a speed of 1 pixel/frame. This appears to the
human as a pair of separate gratings gliding over each other,
each moving in its own direction. As shown in Fig. 22, the
model also indicates that each frequency should appear to
move in its own direction.

C. Apparent Motion
The input was a pair of Gaussian spatial blobs, as described
above, that appeared only in frames 6 and 8 of the 16-frame
sequence. The distance between blob centers was two pixels

i t_ .1 i S

'I _ 1 4'I, I 

Fig. 24. A sequence of natural images in which 1two, objects (the
hands) move in different directions. The width is 32 pixels.

1 3 ~~~ 4 1 

Fig. 25. The scalar-sensor responses Rk,i to the input in Fig. 24.
Scale, 8 cycles/width, direction, 1080. The first four frames are
wrap-arounds from the end of the response.
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It is an interesting case because it contains objects moving in
different directions at different places. It is edifying to ex-
amine the responses of the scalar sensor for a particular scale
and direction. Figure 25 shows the scalar response Rk,! at a
scale of 8 cycles/width in a direction of 1080. These sensors
respond only to the upward-moving right band, all other image
components having been filtered out.

The vector responses are shown in Fig. 26. The output at
both scales shows responses that are approximately correct
as to speed and direction (as compared with the nominal speed
and direction of the hand) and agree with our subjective im-
pression of the movement of the hands.

7. DISCUSSION

A. Relation to Other Models
Since our first descriptions of the scalar motion sensor,5 7 two
descriptions of similar mechanisms have appeared. 5 0'5' Both
models resemble ours in beginning with linear spatiotemporal
filters selective for spatial frequency, but both differ from ours
in important respects. In the van Santen-Sperling model,
the outputs of opposite-direction sensors are multiplied and
the result integrated over some interval. In the model of
Adelson and Bergen, the energy in each sensor output is in-
tegrated over some interval. Both of these procedures, which
we characterize as energy models, are fundamentally different
from the frequency-demodulation operation used in our
model. The energy models go to some effort to remove the
temporal modulation of the sensor response, whereas we
preserve it and note that it directly codes the image-velocity
components. It is interesting to note that energy models will
be quite susceptible to variations in the contrast of image
components at different orientations and directions. Our
model will, on the other hand, be immune to these effects,
since the temporal frequency of the scalar-sensor response is
largely independent of contrast. This advantage is similar
to that enjoyed by FM radio broadcasts over AM.

The descriptions of the energy models do not yet go beyond
the level of a single scalar sensor. Both are defined in only one
spatial dimension and thus do not confront the problem of
estimating the full velocity vector from the ambiguous sca-
lar-sensor responses. Neither model specifies the particular
spatial or temporal impulse response of their sensors. Finally,
both energy models are of a single sensor and hence do not
specify how the sensors are distributed over space or fre-
quency. These differences prevent further comparisons with
our model, but it seems likely that experimental tests might
distinguish between our model and more completely specified
versions of the energy models.

B. Remaining Questions
We have constructed a system for processing a dynamic visual
input (a movie), which assigns velocities to components of the
input. The output may be regarded as a sampled, multiple-
scale velocity field. The velocity assignments made by the
system resemble those made by human observers, though no
strict tests of this correspondence have yet been made.

A number of issues have been left unresolved, and several
known features of human vision have not been modeled. For
example, though our temporal impulse response is matched
to human sensitivity, no similar match has been made in the

spatial domain. The spatial contrast-sensitivity function will
affect the precise correspondence between model outputs and
human judgments. Likewise, the space-variant resolution
of human vision may have important effects on motion per-
ception, but it is not included in this version of our model.

Another intriguing and unresolved issue is the time scale
of velocity assignments. There are at least four questions:

(1) How much time is used to compute a velocity esti-
mate?

(2) How often is a new estimate computed?
(3) Are the answers to the previous two questions the same

at each scale?
(4) To what moment in time is the velocity assigned?

The first three questions are straightforward and might be
resolved by experiment, but the fourth requires further ex-
planation.

At issue is how information from different sources is related
in the time dimension. Just as estimates of velocity are as-
signed to particular locations and scales, so are they assigned
to particular times. Just as we might suspect that information
at different scales is kept in registration by a topographic
mapping, so information from different mental processing
channels must be kept in chronographic registration. For
instance, to catch a ball in flight the human must keep in
registration a number of visual representations (e.g., velocity,
shape, color) as well as a motor representation of the position
of the hand.

This example also illustrates the special problems in per-
ception that are due to the causality of processing in the time
domain. Visual processing takes time and must therefore lag
behind the stimulus events in the world. But, to catch the
ball, one must abolish this lag through prediction and antici-
pation. Therefore we must suppose that, based on a mental
clock, velocities are assigned to the past and used to predict
the present and future.

As noted in the introduction, a model of human motion
sensing must pass two tests. The first is whether it success-
fully mimics psychophysial data on sensitivities, discrimi-
nations, illusions, and appearances. It has passed some pre-
liminary tests of this sort, as described in Section 6. The
second test is how useful and efficient the representation is
for further mental computations. This is likely to be an-
swered only by trying to model higher visual functions, such
as image segmentation, object recognition, and judgments of
object and self-motion in four-dimensional space-time.
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